Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string
نویسندگان
چکیده
We study the implicit time discretization of piano strings governing equations within the Timoshenko prestressed beam model. Such model features two different waves, namely the flexural and shear waves, that propagate with very different velocities. We present a novel implicit time discretization that reduces the numerical dispersion while allowing the use of a large time step in the numerical computations. After analyzing the continuous system and the two branches of eigenfrequencies associated with the propagating modes, the classical θ-scheme is studied. We present complete new proofs of stability using energy-based approaches that provide uniform results with respect to the featured time step. A dispersion analysis confirms that θ = 1/12 reduces the numerical dispersion, but yields a severely constrained stability condition for the application considered. Therefore we propose a new θ-like scheme, which allows to reduce the numerical dispersion while relaxing this stability condition. Stability proofs are also provided for this new scheme. Theoretical results are illustrated with numerical experiments corresponding to the simulation of a realistic piano string. Key-words: Prestressed Timoshenko system , Theta schemes , Implicit time discretization , Dispersion analysis , Stability analysis , Energy techniques ∗ Magique 3d team, Inria Sud Ouest, 200 Avenue de la Vieille Tour, 33 405 TALENCE, France. † Poems team, Inria Rocquencourt, Le Chesnay, France. ‡ Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA. ha l-0 07 38 23 3, v er si on 2 4 O ct 2 01 2 Études de stabilité et de dispersion pour un schéma temporel amélioré pour le système de Timoshenko précontraint simplement supporté. Application à la corde de piano raide. Résumé : Nous étudions la discrétisation implicite en temps des équations permettant de modéliser les cordes de piano, grâce au modèle de poutre précontrainte de Timoshenko. Ce modèle considère la propagation de deux ondes (de flexion et de cisaillement) à des vitesses très différentes. Nous présentons une nouvelle discrétisation en temps implicite qui permet de réduire la dispersion numérique tout en autorisant un grand pas de temps lors des simulations numériques. Après avoir analysé le système continu et ses deux branches de fréquences propres, associées à des modes propres, le θ-schéma classique est étudié. Nous présentons des preuves nouvelles de stabilité, basées sur une approche énergétique et qui fournissent des estimations uniformes par rapport au pas de temps. Une analyse de dispersion confirme que la valeur θ = 1/12 réduit la dispersion numériques, mais conduit à une condition de stabilité très sévère pour l’application considérée. Nous proposons donc un nouveau schéma de type θ-schéma, qui permet de réduire la dispersion numérique tout en relaxant la restriction sur le pas de temps. Des preuves de stabilité sont également fournies pour ce nouveau schéma. Les résultats théoriques sont illustrés par des expériences numériques correspondant à la simulation d’une corde de piano réaliste. Mots-clés : système de Timoshenko précontraint , theta schémas , discrétisation implicite en temps , analyse de dispersion , analyse de stabilité , techniques d’énergie ha l-0 07 38 23 3, v er si on 2 4 O ct 2 01 2 Analysis of improved time discretization for Timoshenko systems. 3
منابع مشابه
[hal-00873632, v1] Dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string
We study the implicit time discretization of Timoshenko prestressed beams. This model features two types of waves: flexural and shear waves, that propagate with very different velocities. We present a novel implicit time discretization adapted to the physical phenomena occuring at the continuous level. After analyzing the continuous system and the two branches of eigenfrequencies associated wit...
متن کاملSize-Dependent Forced Vibration Analysis of Three Nonlocal Strain Gradient Beam Models with Surface Effects Subjected to Moving Harmonic Loads
The forced vibration behaviors are examined for nonlocal strain gradient nanobeams with surface effects subjected to a moving harmonic load travelling with a constant velocity in terms of three beam models namely, the Euler-Bernoulli, Timoshenko and modified Timoshenko beam models. The modification for nonlocal strain gradient Timoshenko nanobeams is exerted to the constitutive equations by exc...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملNumerical Simulations of Piano Strings. I. a Physical Model for a Struck String Using Finite Difference Methods
The first attempt to generate musical sounds by solving the equations of vibrating strings by means of finite difference methods (FDM) was made by Hiller and Ruiz [J. Audio Eng. Soc. 19, 462472 (1971)]. It is shown here how this numerical approach and the underlying physical model can be improved in order to simulate the motion of the piano string with a high degree of realism. Starting from th...
متن کامل